Guitar amplifiers using output devices such as the TDA7293 (100 W) or LM3886 (68 W) are surprisingly of ten damaged as a result of excessive supply voltage in the quiescent state. The transformers are of ten used so close to their specification that this problem can even be caused by a high mains input voltage. In most countries the domestic AC outlet voltage is permitted to rise as high 10 % above the nominal (published) value. Since replacing the transformer is not an attractive proposition, the author developed a relatively simple electronic solution to the overvoltage problem: a voltage limiter for the symmetric supply to the amplifier.
The circuit is based on the classical voltage regulator arrangement of a Zener diode connected to the base of a pass transistor. However, in this version we replace the conventional bipolar transistor with a power MOSFET.The circuit is symmetrical with respect to the negative and positive supplies, and so we shall only describe the positive half.
Voltage Limiter for Guitar Amplifiers Circuit Diagram
The input voltage (at most 50 V) supplies the chain of Zener diodes D1, D2 and D3 via resistor R3. The resistor limits the current through the Zener diodes to about 5 mA. The series connection of Zener diodes has the advantage that their dissipation is divided among them, as well as giving more options for the total voltage drop by judicious selection of individual components. The sum of the diode voltages (39 V with the values given) must be greater than the desired limiting out-put voltage by the gate-source voltage of the MOSFET. C1 smooths the voltage across the Zener diode chain. The circuit therefore not only limits the voltage, but also reduces the ripple (hum component) on the supply. The gate of the HEXFET is driven via R1. In con-junction with C4, this prevents the FET from oscillating.
Without any load the output voltage is rather higher than expected. With a small load, such as that presented by the output stage in its quiescent state, it falls to the desired value. The circuit then does not provide regulation of the output voltage, but rather a stabilisation function.The operation of the negative half of the circuit is identical to that of the positive half apart from the polarity of the voltages, and hence a P-channel MOSFE T must be used there.
It is worth noting that there is a relatively large degree of variation (up to a few volts) in the gate-source voltage of the HE XFETs used. This can be compensated for by selecting the Zener diodes in the chain and the cur-rent through them, but for most applications the exact voltage at which limiting begins to occur will not be critical.
The HEXFETs must be provided with adequate cooling. If possible, they can be attached to the heatsink already present in the amplifier; other wise, a separate heatsink will be required. A thermal rating of 2.5 K/W will be suitable.
The circuit is based on the classical voltage regulator arrangement of a Zener diode connected to the base of a pass transistor. However, in this version we replace the conventional bipolar transistor with a power MOSFET.The circuit is symmetrical with respect to the negative and positive supplies, and so we shall only describe the positive half.
Voltage Limiter for Guitar Amplifiers Circuit Diagram
The input voltage (at most 50 V) supplies the chain of Zener diodes D1, D2 and D3 via resistor R3. The resistor limits the current through the Zener diodes to about 5 mA. The series connection of Zener diodes has the advantage that their dissipation is divided among them, as well as giving more options for the total voltage drop by judicious selection of individual components. The sum of the diode voltages (39 V with the values given) must be greater than the desired limiting out-put voltage by the gate-source voltage of the MOSFET. C1 smooths the voltage across the Zener diode chain. The circuit therefore not only limits the voltage, but also reduces the ripple (hum component) on the supply. The gate of the HEXFET is driven via R1. In con-junction with C4, this prevents the FET from oscillating.
Without any load the output voltage is rather higher than expected. With a small load, such as that presented by the output stage in its quiescent state, it falls to the desired value. The circuit then does not provide regulation of the output voltage, but rather a stabilisation function.The operation of the negative half of the circuit is identical to that of the positive half apart from the polarity of the voltages, and hence a P-channel MOSFE T must be used there.
It is worth noting that there is a relatively large degree of variation (up to a few volts) in the gate-source voltage of the HE XFETs used. This can be compensated for by selecting the Zener diodes in the chain and the cur-rent through them, but for most applications the exact voltage at which limiting begins to occur will not be critical.
The HEXFETs must be provided with adequate cooling. If possible, they can be attached to the heatsink already present in the amplifier; other wise, a separate heatsink will be required. A thermal rating of 2.5 K/W will be suitable.
Author :Alfred Rosenkränze - Copyright: Elektor
Post a Comment