Mobile Car Stereo Player

Using a mobile phone while driving is dangerous. It is also against the law. However, you can use your mobile phone as a powerful music player with the help of a stereo power amplifier. This does away with the need of a sophisticated in-dash car music system. Most mobile phones have a music player that offers a number of features including preset/manual sound equalisers. They have standard 3.5mm stereo sockets that allow music to be played through standard stereo headphones/sound amplifiers. Nokia 2700 classic is an example.

Circuit diagram :

Circuit of mobile car stereo player

Mobile Car Stereo Player Circuit Diagram

A car audio amplifier with 3.5mm socket can be designed and simply connected to the mobile phone output via a shielded cable with suitable connectors/jacks (readymade 3.5mm male-to-male connector cable is a good alternative). Fig. 1 shows the circuit of car stereo player. It is built around popular single-chip audio power amplifier TDA1554Q (IC1). The TDA1554Q is an integrated class-B power amplifier in a 17-lead single-in-line (SIL) plastic power package.

IC TDA1554Q contains four 11W identical amplifiers with differential input stages (two inverting and two non-inverting) and can be used for single-ended or bridge applications. The gain of each amplifier is fixed at 20 dB. Here it is configured as two 22W stereo bridge amplifiers. The amplifier is powered from the 12V car battery through RCA socket J2. Diode D1 protects against wrong-polarity connection. LED1 indicates the power status.

Stereo Jack :

3.5mm stereo socket and (b) 3.5mm

(a) 3.5mm stereo socket and (b) 3.5mm Stereo Jack

Connect stereo sound signal from the 3.5mm headset socket of the mobile phone to audio input socket J1. When you play the music from your mobile, IC1 amplifies the input. The output of IC1 is fed to speakers LS1 and LS2 fitted at a suitable place in your car. Electrolytic capacitor C5 connected between pin 4 of IC1 and GND improves the supply-voltage ripple rejection. Components R2 and C4 connected at mute/standby pin (pin 14) of IC1 eliminate the switch on/off plop. The circuit is quite compact. A good-quality heat-sink assembly is crucial for IC1. Fig. 2 shows the stereo socket and stereo jack.

Proposed enclosure Proposed enclosure

Assemble the circuit on a general-purpose PCB and enclose in a suitable cabinet. Small dimensions of the power amplifier make it suitable for being enclosed in a plastic (ABS) case with vent holes. Signal input socket, speaker output terminals, on/off switch, indicator, fuse holder and power supply socket are best located on the front panel of the enclosure as shown in Fig. 3.

Author : T.K. Hareendran - Copyright : EFY

Video Line Driver

This circuit is a video line driver specifically intended for use with a single-ended power supply. As a matter of fact, the synchronised outputs of a line driver for composite-video signals go negative with respect to ground. In order to be able to process these negative signals in a circuit powered from a single-ended supply, it is necessary to AC-couple the input of the opamp as well as level-shift the signal in the positive direction.

Circuit diagram :

Video Line Driver-Circuit Diagram

Video Line Driver Circuit Diagram

The input is terminated into a 75 Ω resistor (R1). From here, the signal passes through AC-coupling capacitor C2 and is applied to potential divider R2-R3, which provides the necessary DC-offset. The shift into the positive direction amounts to +1.7 V, with the values shown in the schematic. To avoid any misunderstandings we should add that this value is fairly critical. Deviating from the values shown can lead to distortion in the complementary input stage of the opamp that has been used here, and this of course, has to be avoided.

PCB-Layout :

PCB-LAOUT

Video Line Driver PCB-Layout

Because we provided the circuit with its own voltage regulator circuit (IC2), just about any mains adapter will suffice for the power supply. The current consumption is less than 20 mA. The construction of the line driver using the accompanying printed circuit board layout is no more than a simple, routine job.

Parts List :

Resistors:
R1,R7 = 75Ω
R2...R4 = 4kΩ7
R5,R6 = 1kΩ

Capacitors:
C1,C4,C5,C7C10,C12 =
100nF
C2 = 47µF 16V radial
C3,C11 = 10µF 6 V radial
C6 = 220µF 6 V radial
C8 = 1000 µF 6V radial
C9 = 100µF 16V radial

Semiconductors:
D1 = 1N4001
IC1 = OPA353UA
IC2 = 78L05

Miscellaneous:
PC1-PC6 = PCB solder pin
Case, e.g., Hammond type
1590A

Copyright : Elektor

10W Audio Amplifier–TDA1010

This audio amplifier Circuit is a class-B audio power amplifier using a TDA1010. It is easy to construct and has only a few external components. The circuit is designed with short circuit and thermal protection. It can drive loads as low as 1.6 ohm and is capable of deliveringover 10 watts from a 16 V DC power supply.

Circuit diagram :

10W Audio Amplifier–TDA1010 Circuit Diagram

10W Audio Amplifier Circuit Diagram

The TDA1010 is a monolithic integrated class-B audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The wide supply voltage range and the flexibility of the IC make it an attractive proposition for record players and tape recorders with output powers up to 10 W.

RGB Solar Lamp

This deluxe solar-powered light  uses a battery and solar cells salvaged from a solar lamp with a four-cell battery (4.8 V nominal terminal  voltage).

Circuit diagram :

RGB Solar Lamp-Circuit Diagram

RGB Solar Lamp Circuit Diagram

The circuit can operate from any  DC voltage around this value and  its current consumption, at 20 mA,  is low. This means that the battery  can give up to five days of operation. The circuit consists of an Atmel  ATtiny microcontroller which drives  a red, a green and a blue LED directly  from three port pins. Series resistors are of course included to limit  the LED current. The microcontroller  drives the LEDs in sequence to produce an  RGB running light effect. The microcontroller  is also responsible for ensuring that the light automatically switches on when it gets dark  and off when it is light. The light sensor is  made from one of the solar cells from a bro-ken solar lamp (it is more common  for the battery to fail rather than  the solar cells).

The power output of this cell is not  important, as the microcontroller  only measures its output voltage  using its internal A/D converter  connected to pin PB4. The project is  ideal for beginners, as a ready-programmed microcontroller is avail-able from the Elektor Shop (order  code 100581-41).

The author developed the firmware  using Flowcode. Source and hex  files for the firmware are available  for free download from the project  pages on the Elektor website at: www.elektor.com

 

Author : Marcel Ochsendorf - Copyright : Elektor

Valve Sound Converter

‘Valve sound’ is not just an anachronism: there are those who remain ardent lovers of the quality of sound produced by a valve amplifier. However, not everyone is inclined to splash out on an expensive valve output stage or complete amplifier with a comparatively low power output. Also, for all their aesthetic qualities, modern valve amplifiers burn up (in the full sense of the word!) quite a few watts even at normal listening volume, and so are not exactly environmentally harmless. This valve sound converter offers a cunning way out of this dilemma. It is a low cost unit that can be easily slipped into the audio chain at a suitable point and it only consumes a modest amount of energy.

Valve Sound Converter-Circuit diagram

A valve sound converter can be constructed using a common-or-garden small-signal amplifier using a readily-available triode. Compared to using a pentode, this simplifies the circuit and, thanks to its less linear characteristic, offers even more valve sound. For stereo use a double triode is ideal. Because only a low gain is required, a type ECC82 (12AU7) is a better choice than alternatives such as the ECC81 (12AT7) or ECC83 (12AX7). This also makes things easier for home brewers only used to working with semiconductors, since we can avoid any difficulties with high voltages, obscure transformers and the like:the amplifier stage uses an anode voltage of only 60 V, which is generated using a small 24 V transformer and a voltage doubler (D3, D4, C4 and C5).

Since the double triode only draws about 2mA at this voltage, a 1 VA or 2 VA transformer will do the job. To avoid ripple on the power supply and hence the generation of hum in the converter, the anode voltage is regulated using Zener diodes D1 and D2, and T1. The same goes for the heater supply: rather than using AC, here we use a DC supply, regulated by IC1. The 9 V transformer needs to be rated at at least 3 VA. As you will see, the actual amplifier circuit is shown only once. Components C1 to C3, R1 to R4, and P1 need to be duplicated for the second channel.

Valve Sound Converter-w

The inset valve symbol in the circuit diagram and the base pinout diagram show how the anode, cathode and grid of the other half of the double triode (V1.B) are connected. Construction should not present any great difficulties. Pay particular attention to screening and cable routing, and to the placing of the transformers to minimise the hum induced by their magnetic fields. Adjust P1 to set the overall gain to 1 (0 dB). The output impedance of 47 kΩ is relatively high, but should be compatible with the inputs of most power amplifiers and preamplifiers.


For a good valve sound, the operating point of the circuit should be set so that the audio output voltage is in the region of a few hundred millivolts up to around 1.5 V. If the valve sound converter is inserted between a preamplifier and the power amplifier, it should be before the volume control potentiometer as otherwise the sound will change significantly depending on the volume. As an example, no modifications are needed to an existing power amplifier if the converter is inserted between the output of a CD player and the input to the amplifier.

 

Author : Stefan Dellemann - Copyright : Elektor

Versatile DC-DC Converter

Here is a versatile power coupler that connects a device to 5V-19V DC generated from AC mains by a power adaptor. Power adaptors come in different voltage outputs like 5V (for mobile phones), 12V (for external hard drives) and 19V (for laptops). Sometimes the power adaptor may have a voltage rating higher than the required voltage. With the converter circuit given here, the adaptor can be used to power any device at a lower voltage.

For instance, by using a 19V laptop adaptor, you can power a TTL circuit at 5V. There can also be other instances when one needs a 3V or 6V supply. All these and many other intermediate voltages are easily possible with this versatile converter circuit when used together with any off-hand power adaptor.

Circuit diagram :

Versatile DC-DC Converter-Circuit diagram

Versatile DC-DC Converter Circuit diagram

Fig. 1 shows the circuit of the DC-DC converter. Smooth reduction in the voltage is achieved using the LM317 regulator IC. The complete unit can fit inside a piece of a glue stick tube.

Adjusting variable resistor VR1 gives the desired output voltage. The output voltage is read using a 0-100µA ammeter, whose series resistance R* is chosen such that the maximum desired voltage could be covered. For instance, if full-scale deflection (FSD) current of the meter is 100 µA and you need an output voltage of up to 15V, then R* = 15/0.0001 = 150 kΩ. The desired value of R* is obtained by using 150-kilo-ohm preset VR2.

Use of a variable resistor which also has an on/off switch like the one in old radios is recommended. It will cut off the coupler from the input power supply without having to accomodate an additional switch. Also, use a heat-sink with LM317 to handle the desired amount of power.

 

Proposed-assembly

Assemble the circuit on a small general-purpose PCB and enclose in a suitable case. Fit the entire PCB inside a glue stick tube as shown in Fig. 2. Affix the female and male connectors on the opposite ends and place the ammeter in between the stick tube. You can directly read the output voltage on the ammeter after due calibration.

Note. You can use a suitable VU meter instead of 0-100µA ammeter and calibrate accordingly.

 

Copyright : EFY

Time Transporter

Some microcontroller applications such as  those which log or track information often  require current time and date information  to be stored along with the collected data.  A Real Time Clock (RTC) chip such as the IC  DS1307 with battery back-up can be used to  supply the required information. This particular chip easily integrates into most designs  using the absolute minimum of external components. The process of programming the  chip in software is simple and is supported in  the majority of programming environments.  Intrinsic functions, header files and libraries are widely implemented for the device. A  quick trawl of the Internet will uncover lots of  programming examples.

Project Image :

Time Transporter-Image

 Time Transporter Image

 

So far so good except that the chip first needs to be programmed with the current time and date information. This information is maintained and updated (thanks to a keep-alive battery) even when the external circuitry is shut down. To carry out the programming requires connection to a keyboard and display but the additional hardware will only ever be needed for this one-off event.

Circuit diagram :

Time Transporter-Circuit Diagram

Time Transporter Circuit Diagram

The design suggested here solves  the problem by combining the IC, battery, crystal and peripheral components  onto a tiny plug-in PCB. The circuit consists  of a small square of prototyping perf board  onto which is mounted the IC, a crystal, battery, decoupling capacitor (C1) and two  (optional) pull-up resistors for the open collector outputs. An IC socket with extra longs  pins (or two modular connector strips) completes the design. The complete RTC module (see photo) is self contained and can be  plugged from one circuit to another using  its long pins without losing track of time and  date. The only requirement in the target sys-tem is space for an 8-way DIL socket, wiring  to the socket and software to read the time  information.

The essential advantage with this  approach is that hard and software  expenditure in the target system is  kept to a minimum, it will only ever  need to read the time and date information. The extra hardware and soft-ware required to set both time and  date are assigned to a separate sys-tem, maybe a dedicated breadboard  design.

Once programmed the ticking clock  module can then simply be transferred to the target system.

 

Author :Jochen Brüning - Copyright : Elektor

Class-A Headphone Amplifier

This circuit is derived from the Portable Headphone Amplifier featuring an NPN/PNP compound pair emitter follower output stage. An improved output driving capability is gained by making this a push-pull Class-A arrangement. Output power can reach 427mW RMS into a 32 Ohm load at a fixed standing current of 100mA. The single voltage gain stage allows the easy implementation of a shunt-feedback circuitry giving excellent frequency stability.

Circuit diagram :

Class-A Headphone Amplifier-Circuit Diagram

Class-A Headphone Amplifier Circuit diagram

The above mentioned shunt-feedback configuration also allows the easy addition of frequency dependent networks in order to obtain an useful, unobtrusive, switchable Tilt control (optional). When SW1 is set in the first position a gentle, shelving bass lift and treble cut is obtained. The central position of SW1 allows a flat frequency response, whereas the third position of this switch enables a shelving treble lift and bass cut.

Note:

  • Before setting quiescent current rotate the volume control P1 to the minimum, Trimmer R6 to zero resistance and Trimmer R3 to about the middle of its travel.
  • Connect a suitable headphone set or, better, a 33 Ohm 1/2W resistor to the amplifier output.
  • Connect a Multimeter, set to measure about 10Vdc fsd, across the positive end of C5 and the negative ground.
  • Switch on the supply and rotate R3 in order to read about 7.7-7.8V on the Multimeter display.
  • Switch off the supply, disconnect the Multimeter and reconnect it, set to measure at least 200mA fsd, in series to the positive supply of the amplifier.
  • Switch on the supply and rotate R6 slowly until a reading of about 100mA is displayed.
  • Check again the voltage at the positive end of C5 and readjust R3 if necessary.
  • Wait about 15 minutes, watch if the current is varying and readjust if necessary.

Parts List :

P1          : 22K  Dual gang Log Potentiometer 
R1 : 15K
R2 : 220K
R3 : 100K
R4 : 33K
R5 : 68K
R6 : 50K
R7 : 10K
R8,R9 : 47K
R10,R11 : 2R2
R12 : 4K7
R13 : 4R7
R14 : 1K2
R15,R18 : 330K
R16 : 680K
R17,R19 : 220K
R20,R21 : 22K
C1,C2,C3,C4 : 10µF/25V
C5,C7 : 220µF/25V
C6,C11 : 100nF
C8 : 2200µF/25V
C9,C12 : 1nF
C10 : 470pF
C13 : 15nF
D1 : LED
D2,D3 : 1N4002
Q1,Q2 : BC550C
Q3 : BC560C
Q4 : BD136
Q5 : BD135
IC1 : 7815
T1 : 15CT/5VA Mains transformer
SW1 : 4 poles 3 ways rotary Switch
SW2 : SPST slide or toggle Switch

Short-Wave Converter

This short-wave converter, which doesn’t have a single coil requiring alignment, is intended to enable simple medium-wave receivers to be used to listen to short-wave signals. The converter transforms the 49-m short-wave band to the medium-wave frequency of 1.6 MHz. At the upper end of the medium-wave band, select an unoccupied frequency that you want to use for listening to the converted short-wave signals. Good reception performance can be obtained using a wire antenna with a length of one to two metres.

Circuit diagram :

Short-Wave Converter-Circuit Diagram

Short-Wave Converter Circuit Diagram

The converter contains a free-running oscillator with a frequency of around 4.4 MHz, which is tuned using two LEDs (which act as variable-capacitance diodes!) and a normal potentiometer. The frequency range is set by adjusting the emitter current using a 1-kΩ trimpot. The oscillator frequency depends strongly on the operating point. This is due to the combination of using an audio transistor and the extremely low supply voltage. Under these conditions, the transistor capacitances are relatively large and strongly dependent on the operating point.

The second transistor forms the mixer stage. If you calculate the resonant frequencies of the tuned circuits, you will obtain 6.7 MHz for the antenna circuit and 1.7 MHz for the output circuit. Additional transistor capacitances and the effects of the coupling capacitors shift each of the resonant frequencies down-ward. The tuned circuits are relatively heavily damped to obtain bandwidths that are large enough to allow the circuit to be used without any specific alignment. The results are good despite the low collector–emitter voltage of around only 0.6 V, due to the fact that only a modest amount of mixer gain is necessary. The entire circuit also draws less than 1 mA.

 

Author :Burkhard Kainka - Copyright : Elektor

Servo Motor Tester

When using a servo motor in a project, if the servo motor does not respond as per the input, how to make sure that the fault is not in the servo motor but the circuit or logic? One way is to isolate the servo motor from the circuit and check its proper working by feeding it pulses of varying width and checking the angle that the servo motor turns to. For example, a 1.5ms pulse should make the motor turn to a 90-degree position (neutral position).

Circuit diagram:

Servo-Motor-Tester Circuit

Servo Motor Tester Circuit Diagram

The circuit presented here generates pulses of varying widths. It is built around two NE555 timer ICs (IC1 and IC2) and a few discrete components. Timer IC1 is configured as an astable multivibrator with a time period of 20 ms. Every 20 ms, the astable provides a very sharp negative pulse to trigger IC2. Timer IC2 is configured as a monostable multivibrator that produces 1ms, 1.5ms and 2ms long pulses to rotate the servo motor (M1).

Pin 4 of IC1 is pulled down by resistor R2. When switch S1 is pressed, the astable multivibrator triggers the monostable to produce a pulse as per the position of switch S2. Switch S2 can select resistors R4, R5 and R6 together, and R7 to produce monostable pulse output of 1 ms, 1.5 ms and 2 ms, respectively. Preset VR1 is used to set the time period of IC1 to 20 ms.

Using switch S2, select the monostable time period as 1 ms, 1.5 ms or 2 ms and press switch S1. The servo motor should rotate to extreme left, middle or extreme right, respectively.

 

Copyright : EFY

Build Your Own Rotary Encoder

The cheaper variety of rotary encoders, including those from Bourns, are mechanical devices rarely capable of generating more than 25 pulses per revolution (ppr). If more ppr are desired, an optical encoder is usually a better alternative. Devices exist in this class with up to 256 ppr but then the price is well beyond the reach of the hobbyist. A mechanical (pulley/string) transmission to increase the ppr of mechanical encoders is possible in theory but at the cost of an awkward amount of torque. Also, the simplest solution (apparently) of turning the mechanical encoder faster than usual is not viable as it will stress the device beyond its limits. Another alternative is to turn a small stepper motor into an encoder. After all, a stepper motor has permanent magnets inducing voltages in the rotor coils. Without going into too much detail, a stepper motor requires two signals with a phase difference of 90 degrees. The voltages generated per coil can then be said to represent a ‘Gray code’, that is, two voltages 90 degrees out of phase.

Circuit diagram :

Build your own rotary encoder-Circuit Diagram

Build Your Own Rotary Encoder Circuit Diagram

Smaller motors salvaged by the dozens from old printers and flatbed scanners are particularly suited to our purpose as they usually turn smoothly and have a small cogwheel attached allowing a larger wheel to be driven. A 1:10 transmission for example easily results in a rotary encoder with 150 or so ppr, which may be very suitable for tuning a receiver in 100 Hz steps. Some printers and flatbed scanners have stepper motors with 1- or 2-wheel gear reductions on the spindle. The motor used by the author gave an effective reduction of 1:13 using two wheels. A 6-mm spindle was provisionally mounted on the second cog-wheel, and turning the spindle resulted in 180 pulses per revolution.

In this circuit, voltages supplied by the coils in the stepper motors are converted into square wave signals having TTL levels. As with a ‘real’ Bourns encoder, Gray encoded signals are output at 90 degrees phase difference. The two opamps inside the TL072 case are configured as comparators. Thanks to their high gain, even small voltages are reliably processed, enabling your logic to respond when the spindle is turned slowly.

The additional hysteresis created with R1 and R2 is required in view of the ‘output’ signals typically supplied by the stepper motor. This simple circuit is the poor man’s equivalent of a very reliable, high resolution rotary encoder and may also be used to decode speed and direction of fast turning spindles on, for example, electric motors. Mechanical encoders simply aren’t suitable for that purpose.

Author :Gert Baars - Copyright : Elektor

Laptop Audio Amplifier-IC LA 4440

This is the best IC LA 4440 Laptop Audio Amplifier circuit diagram, the audio output from the laptop’s built-in loudspeakers is low. A energy amplifier is needed to obtain a high volume. This is a simple circuit to amplify the laptop’s audio output. The circuit is made around energy amplifier IC LA 4440 (IC1) along with a couple of other components. LA4440 is really a dual funnel audio energy amplifier.

Circuit diagram :

Laptop-Audio-Amplifier-IC-LA-4440

Laptop Audio Amplifier Circuit Diagram

It’s low distortion over an array of low to high wavelengths with good funnel separation. Built-in dual channels enable it for stereo system and bridge amplifier programs. In dual mode LA4440 gives 6 w per funnel as well as in bridge mode 19- watt output. It’s ripple rejection of 46 dB. The audio result can be recognized by utilizing two 6-watt loudspeakers.

Connect hooks 2, 6 and ground of IC1 towards the stereo system jack which is combined with laptops. Assemble the circuit on the general-purpose PCB and enclose inside a appropriate cabinet. The circuit works off controlled 12V power supply. It’s suggested to make use of audio input socket within the circuit board. Make use of a proper warmth-sink for LA4440.

 

Copyright : EFY

An Electronic Watering Can

Summertime is holiday time but who will be looking after your delicate houseplants while you are away? Caring for plants is very often a hit or miss affair, sometimes you under-water and other times you over-water. This design seeks to remove the doubt from plant care and keep them optimally watered.

The principle of the circuit is simple: first the soil dampness is measured by passing a signal through two electrodes placed in the soil. The moisture content is inversely proportional to the measured resistance. When this measurement indicates it is too dry, the plants are given a predefined dose of water. This last part is important for the correct function of the automatic watering can because it takes a little while for the soil to absorb the water dose and for its resistance to fall. If the water were allowed to flow until the soil resistance drops then the plant would soon be flooded.

Circuit diagram :

An Electronic Watering Can-Circuit Diagram

An Electronic Watering Can Circuit Diagram

The circuit shows two 555 timer chips IC1 and IC2. IC1 is an astable multivibrator producing an ac coupled square wave at around 500 Hz for the measurement electrodes F and F1. An ac signal reduces electrode corrosion and also has less reaction with the growth-promoting chemistry of the plant. Current flowing between the electrodes produces a signal on resistor R13. The signal level is boosted and rectified by the voltage doubler produced by D2 and D3. When the voltage level on R13 is greater than round 1.5 V to 2.0 V transistor T2 will conduct and switch T3. Current flow through the soil is in the order of 10 µA.

T2 and T3 remain conducting providing the soil is moist enough. The voltage level on pin 4 of IC2 will be zero and IC2 will be disabled. As the soil dries out the signal across R13 gets smaller until eventually T2 stops conducting and T3 is switched off. The voltage on pin 4 of IC2 rises to a ‘1’ and the chip is enabled. IC2 oscillates with an ‘on’ time of around 5 s and an ‘off’ time (adjustable via P2) of 10 to 20 s. This signal switches the water pump via T1. P1 allows adjustment of the minimum soil moisture content necessary before watering is triggered.

The electrodes can be made from lengths of 1.5 mm2 solid copper wire with the insulation stripped off the last 1 cm. The electrodes should be pushed into the earth so that the tips are at roughly the same depth as the plant root ball. The distant between the electrodes is not critical; a few centimetres should be sufficient. The electrode tips can be tinned with solder to reduce any biological reaction with the copper surface. Stainless steel wire is a better alternative to copper, heat shrink sleeving can used to insulate the wire with the last 1 cm of the electrode left bare. Two additional electrodes (F1) are con nected in parallel to the soil probe electrodes (F). The F1 electrodes are for safety to ensure that the pump is turned off if for some reason water collects in the plant pot saucer. A second safety measure is a float switch fitted to the water reservoir tank.

When the water level falls too low a floating magnet activates a reed switch and turns off the pump so that it is not damaged by running with a dry tank. Water to the plants can be routed through closed end plastic tubing (with an internal diameter of around 4 to 5 mm) to the plant pots. The number of 1 mm to 1.5 mm outlet holes in the pipe will control the dose of water supplied to each plant. The soil probes can only be inserted into one flowerpot so choose a plant with around average water consumption amongst your collection. Increasing or decreasing the number of holes in the water supply pipe will adjust water supply to the other plants depending on their needs. A 12 V water pump is a good choice for this application but if you use a mains driven pump it is essential to observe all the necessary safety precautions.

Last but not least the electronic watering can is too good to be used just for holiday periods, it will ensure that your plants never suffer from the blight of over or under-watering again; provided of course you remember to keep the water reservoir topped up…

Author : Robert Edlinger - Copyright : Elektor

Guitar Effect Pedal Power

A small box is fitted to the rear of the amplifier providing a 9V output for the effect pedal. The amplifier section gets 9V through a pedal switch. This power output and guitar signal input lines are combined into a single unit with multi-way cable connecting points as shown in the following figure.

Circuit diagram :

Guitar Effect Pedal Power-Circuit Diagram

Guitar Effect Pedal Power Circuit Diagram

The circuit can be divided into two sections: power supply and signal handling. The power supply section is built around transformer X1, regulators 7805 and 7905, bridge rectifier comprising diodes D1 through D4, and a few discrete components. The signal-handling circuit is built around two OP27 op-amps (IC3 and IC4). The power supply of about 9V for the effect pedals is derived from step-down transformer X1. MOV1 is a metal-oxide varistor that absorbs any large spike in mains power.  IC 7905 (IC1) is a -5V low-power regulator. By using a 3.9V zener diode (ZD1) at its ground terminal, you get -8.9V output. The same technique is also applied to IC 7805 (IC2)-a +5V regulator to get 8.9V. Use good-quality components and heat-sinks for the regulators. This supply is more than enough for the five effect pedals.

The greater the voltage drop across the regulator, the lower the output current potential. Resistors R1 and R2 provide a constant load to ensure that the regulators keep regulating. Capacitors C3 through C8 ensure that the supplies are as clean as possible. It is very important to use proper heat-sinks for IC1 and IC2. Otherwise, these could heat up.

Working of the circuit is simple. The input signal stage uses a basic differentiation amplifier to accept the incoming signal and a voltage follower to buffer the output to the power amplifier. The differential amplifier is built around IC3. It works by effectively looking at the signals presented to its inputs. If the input signals are of different amplitudes, IC3 amplifies the difference by a factor determined by R4/R3 (where R4=R6 and R3=R5). If the input signals have same amplitudes, these are attenuated by the common-mode rejection ratio (CMRR) of the circuit. The value of CMRR is determined by the choice of the op-amp the auxiliary components used and circuit topology. You can use standard resistors. With the values shown, you get an overall gain of unity.

The combination of resistor R7 and C13 serves as a passive low-pass filter, progressively attenuating unwanted high-frequency signals. The second op-amp (IC4) forms a simple voltage follower (its output follows its input), providing a low output impedance to drive into the standard power amplifier.  Assemble the circuit on a general-purpose PCB and fit it to the rear of an amplifier. The unit must be compact, yet robust. So use a very sturdy aluminium extrusion for the cabinet in order to neatly house the assembled PCB.

To ensure simple operation, there are only three connections to the unit. First, mains power is tapped from the transformer. The second lead carries the 9V output to the amplifier. The third is the guitar signal input at the five-way socket for connection to the effect pedal.

 

Author : Raj K. GoRKhali – Copyright : EFY

EE-ternal Blinker

You occasionally see advertising signs in shops with a blinking LED that seems to blink forever while operating from a sin-gle battery cell. That’s naturally an irresistible challenge for a true electronics hobbyist. And here’s the circuit. It consists of an astable multivibrator with special proper-ties. A 100-µF electrolytic capacitor is charged relatively slowly at a low current and then discharged via the LED with a short pulse. The circuit also provides the necessary voltage boosting, since 1.5 V is certainly too low for an LED.

Circuit diagram :

EE-ternal Blinker-Circuit Diagram

EE-ternal Blinker Circuit Diagram

The two oscillograms demonstrate how the circuit works. The voltage on the collector of the PNP transistor jumps to approximately 1.5 V after the electrolytic capacitor has been discharged to close to 0.3V at this point via a 10-kΩ resistor. It is charged to approximately 1.2 V on the other side. The difference voltage across the electrolytic capacitor is thus 0.9 V when the blink pulse appears. This voltage adds to the battery voltage of 1.5 V to enable the amplitude of the pulse on the LED to be as high as 2.4 V. However, the voltage is actually limited to approximately 1.8 V by the LED, as shown by the second oscillogram. The voltage across the LED automatically matches the voltage of the LED that is used. It can theoretically be as high as 3 V.

The circuit has been optimised for low-power operation. That is why the actual flip-flop is built using an NPN transistor and a PNP transistor, which avoids wasting control current. The two transistors only conduct during the brief interval when the LED blinks. To ensure stable operating conditions and reliable oscillation, an additional stage with negative DC feedback is included. Here again, especially high resistance values are used to minimise current consumption.

The current consumption can be estimated based on the charging current of the electrolytic capacitor. The average voltage across the two 10-kΩ charging resistors is 1 V in total. That means that the aver-age charging current is 50 µA. Exactly the same amount of charge is also drawn from the battery during the LED pulse. The average current is thus around 100 µA. If we assume a battery capacity of 2500 mAh, the battery should last for around 25,000 hours. That is more than two years, which is nearly an eternity. As the current decreases slightly as the bat-ter voltage drops, causing the LED to blink less brightly, the actual useful life could be even longer. That makes it more than (almost) eternal.

 

Author : Burkhard Kainka - Copyright : Elektor

20W Rangkaian Audio Amplifier TDA7240

Here is an audio amplifier based on the TDA7240 IC from ST Microelectronics. The LM1875 is a monolithic power amplifier offering very low distortion and high quality performance for consumer audio applications.

Circuit diagram :

20Watt-Amplifier-Circuit Diagram

20W Rangkaian Audio Amplifier  Circuit Diagram


This circuit of audio amplifier based IC TDA7240 can deliver 20 watts of audio output power into a 4ohm load. The IC has minimum external parts count and is available in the 7 pin compact Heptawatt package. The IC also has a lot of good features like loud speaker protection, short circuit protection, low noise, low distortion etc. The circuit can be operated from a 12V DC single power supply and this makes it very useful in car audio application.

Notes :

  • Use 4 ohm, 20W speaker.
  • S1 is the standby switch and S2 is the ON/OFF switch.
  • LED D2 is a power ON indicator.
  • give good cooling at TDA7240 IC.

Green USB switch

According to the Energy Saving  Trust, if you add up all the current drawn in standby mode by items such as stereos, TVs, VCRs and DVDs over a year in the UK alone, it amounts to 3.1 million tonnes of CO2 released into the atmosphere.This is without factoring in the current drawn by all the PCs,laptops and their associated peripherals left in standby mode.

Circuit diagram :

Green USB switch-Circuit Diagram

Green USB switch Circuit Diagram

It  is  not  necessary  to  spend  a  great deal of money or time to  make a difference on a personal  level. The circuit described here  is designed for use by laptop or  notebook computers. It will automatically switch off all mains  powered peripheral equipment  including monitor, printer, scanner, TV tuner and USB hub etc  when it detects that the notebook  is switched off. The circuit is quite  straightforward; in addition to an  optocoupler it requires a 12 V  double-pole  relay  with  mains  rated contacts and a small power  supply  for  the  optocoupler.  When the laptop is switched on  5 V appears at the USB socket,  activating the relay and switching  through  the  mains  supply  on K3 and K4. The notebook’s  USB socket is still available to be  used as normal but it’s worth remembering that the optocoupler  takes a few milliamps from the  USB supply and this may cause a  problem if a high-current device  is plugged into the USB socket.  In the case where the laptop has  more than enough USB sockets it may be worthwhile us-ing one of them solely for this  circuit, the extension USB connector K2 would then not be  required.

The circuit is mounted into a  mains plug enclosure which  provides a socket where the  mains extension strip will be  plugged into. With any luck  there will be sufficient space  to fit the entire circuit into the  mains extension strip enclosure and save the need for a  separate enclosure. The slow-blow 6.3-A fuse (F1) protects  the equipment plugged into  the strip.

In  addition  to  the  optocoupler  and relay the circuit also has a  ‘freewheel’ diode D1 and a relay  driver formed by T1 and its base  bias voltage divider network R2/ R4. The two ‘snubber’ networks  C1/R3 and C2/R5 reduce the  possibility of arcing which can  occur  when  the  relay  contacts  open (especially with inductive  loads). Capacitors C1 and C2  must be class X2 types which  can handle mains voltage plus any  spikes.  The  power  supply  consists of a small mains trans-former  (12 V,  50 mA),  bridge  rectifier and smoothing capacitor C3.

The laptop’s mains adaptor itself  can also be switched by this circuit when the laptop is fitted with  its rechargeable battery which  allows the computer to boot up  without a mains supply. The en-tire USB switch circuit draws cur-rent even when it is off but this value  is  tiny  compared  to  the  combined standby current of all  the peripherals.

Note that parts of this circuit are  connected to the (potentially lethal) mains supply voltage; it is  essential to provide protection  to ensure that nothing can accidentally make contact with these  parts of the circuit. It is also important to observe correct separation between parts of the circuit carrying low voltage and  those carrying the high volt-age. Please observe the electrical Electrical Safety guide-lines which are reprinted in  Elektor  Electronics  several  times a year.

The  circuit  is  less  suitable  for use with desktop PCs be-cause  the  majority  of  these  machines supply 5 V over the  USB socket even though they  have been shut down via soft-ware. The only way to turn off  in this case is to reach around  the back of the machine and  switch off at the main switch.

Author : Wolfram Winfera - Copyright : Elektor

Model Railway Short-Circuit Beeper

Short circuits in the tracks, points or wiring are almost inevitable when building or operating a model railway. Although transformers for model systems must be protected against short circuits by built-in bimetallic switches, the response time of such switches is so long that is not possible to immediately localise a short that occurs while the trains are running, for example. Furthermore, bimetallic protection switches do not always work properly when the voltage applied to the track circuit is relatively low.

Circuit diagram :

Model Railway Short-Circuit Beeper-Circuit Diagram

Model Railway Short-Circuit Beeper Circuit Diagram

The rapid-acting acoustic short-circuit detector described here eliminates these problems. However, it requires its own power source, which is implemented here in the form of a GoldCap storage capacitor with a capacity of 0.1 to 1 F. A commonly available reed switch (filled with an inert gas) is used for the current sensor, but in this case it is actuated by a solenoid instead of a permanent magnet. An adequate coil is provided by several turns of 0.8–1 mm enamelled copper wire wound around a drill bit or yarn spool and then slipped over the glass tube of the reed switch. This technique generates only a negligible voltage drop. The actuation sensitivity of the switch (expressed in ampèreturns or A-t)) deter-mines the number of turns required for the coil. For instance, if you select a type rated at 20–40 A-t and assume a maxi-mum allowable operating current of 6 A, seven turns (40 ÷ 6 = 6.67) will be sufficient. As a rule, the optimum number of windings must be determined empirically, due to a lack of specification data.

As you can see from the circuit diagram, the short-circuit detector is equally suitable for AC and DC railways. With Märklin transformers (HO and I), the track and lighting circuits can be sensed together, since both circuits are powered from a single secondary winding.

Coil L1 is located in the common ground lead (‘O’ terminal), so the piezoelectric buzzer will sound if a short circuit is present in either of the two circuits. The (positive) trigger voltage is taken from the lighting circuit (L) via D1 and series resistor R1. Even though the current flowing through winding L1 is an AC or pulsating DC current, which causes the contact reeds to vibrate in synchronisation with the mains frequency, the buzzer will be activated because a brief positive pulse is all that is required to trigger thyristor Th1. The thyristor takes its anode voltage from the GoldCap storage capacitor (C2), which is charged via C2 and R2.  The alarm can be manually switched off using switch S1, since although the thyris-tor will return to the blocking state after C2 has been discharged if a short circuit is present the lighting circuit, this will not happen if there is a short circuit in the track circuit. C1 eliminates any noise pulses that may be generated.

As a continuous tone does not attract as much attention as an intermittent beep, an intermittent piezoelectric generator is preferable. As almost no current flows during the intervals between beeps and the hold current through the thyristor must be kept above 3 mA, a resistor with a value of 1.5–1.8 kΩ is connected in parallel with the buzzer. This may also be necessary with certain types of continuous-tone buzzers if the operating current is less than 3 mA. The Zener diode must limit the operating voltage to 5.1 V, since the rated volt-age of the GoldCap capacitor is 5.5 V.

 

Author : R. Edlinger - Copyright  : Elektor

Simple Acoustic Sensor

This acoustic sensor was originally developed for an industrial application (monitoring a siren), but will also find many domestic applications. Note that the sensor is designed with safety of operation as the top priority: this means that if it fails then in the worst-case scenario it will not itself generate a false indication that a sound is detected. Also, the sensor connections are protected against polarity reversal and short-circuits. The supply voltage of 24 V is suitable for industrial use, and the output of the sensor swings over the supply voltage range.

Circuit diagram :

simple Acoustic Sensor-Circuit Diagram

Simple Acoustic Sensor Circuit Diagram

The circuit consists of an electret micro-phone, an amplifier, attenuator, rectifier and a switching stage. MIC1 is supplied with a current of 1 mA by R9. T1 amplifies the signal, decoupled from the supply by C1, to about 1 Vpp. R7 sets the collector current of T1 to a maximum of 0.5 mA. The operating point is set by feedback resistor R8. The sensitivity of the circuit can be adjusted using potentiometer P1 so that it does not respond to ambient noise levels. Diodes D1 and D2 recitfy the signal and C4 provides smoothing. As soon as the voltage across C4 rises above 0.5 V, T2 turns on and the LED connected to the collector of the transistor lights. T3 inverts this signal.

If the microphone receives no sound, T3 turns on and the output will be at ground. If a signal is detected, T3 turns off and the output is pulled to +24 V by R4 and R5. In order to allow for an output current of 10 mA, T3’s collector resistor needs to be 2.4 kΩ. If 0.25 W resistors are to be used, then to be on the safe side this should be made up of two 4.7 kΩ resistors wired in parallel. Diode D4 protects the circuit from reverse polarity connection, and D3 protects the output from damage if it is inadvertently connected to the supply.

 

Author:Engelbert Göpfert - Copyright : Elektor

50W audio amplifier LM3876

LM3876 is a high performance audio power amplifier IC from National Semiconductors. The LM3876 can deliver 50watts of output power into an 8 ohm loudspeaker. LM3876 has excellent signal to noise ratio and has wide supply voltage range. Other features of LM3876 are output to ground short circuit protection, input mute function, and output over voltage protection, etc. Applications of LM3876 are component stereo, compact stereo, surround systems, self powered speakers, etc.

Circuit diagram :

50-w-audio-amplifer-circuit diagram

50W audio amplifier Circuit Diagram

The 50 watt audio amplifier  circuit shown below is designed based on the application diagram from the data sheet of LM3876. Some modifications are made on the original circuit for improving the performance. The bipolar electrolytic capacitor C7 is the input DC decoupling capacitor. R4 is the input resistance. R2 & R1 and bipolar electrolytic capacitor C5 forms a feedback circuit. C2, C1 are filter/by-pass capacitors for the positive supply rail. C4 & C3 are the filters/by-pass capacitors for the negative supply rail. The feedback resistor R2 sets the gain of the amplifier. L1 provides high impedance at high frequencies so that R7 may decouple capacitive loads. R3 is the mute resistance which allows 0.5mA to be drawn from pin8 to turn the mute function OFF. S1 is the mute switch. Resistor R6 and capacitor C8 forms a Zobel network which improves the high frequency stability of the amplifier and prevents oscillations.

Notes :

  • The LM3876 can be operated from a supply voltage range of +/-12V to +/-49V DC.
  • I recommend +/-35V DC for powering the IC.
  • LM3876 requires a proper heat sink.
  • Quiescent current of LM3876 is around 70mA

Source : Circuits today

60W Guitar Amplifier

Bass, Treble, Harmonic modifier and Brightness controls Output power: 40W into 8 Ohm and 60W into 4 Ohm loads

This design adopts a well established circuit topology for the power amplifier, using a single-rail supply of about 60V and capacitor-coupling for the speaker(s). The advantages for a guitar amplifier are the very simple circuitry, even for comparatively high power outputs, and a certain built-in degree of loudspeaker protection, due to capacitor C8, preventing the voltage supply to be conveyed into loudspeakers in case of output transistors' failure. The preamp is powered by the same 60V rails as the power amplifier, allowing to implement a two-transistors gain-block capable of delivering about 20V RMS output. This provides a very high input overload capability.

Circuit Diagram :

GuitarAmp-Circuit Diagram

60W Guitar Amplifier Circuit Diagram

 

Amplifier parts:

R1__________________6K8    1W Resistor
R2,R4_____________470R   1/4W Resistors
R3__________________2K   1/2W Trimmer Cermet
R5,R6_______________4K7  1/2W Resistors
R7________________220R   1/2W Resistor
R8__________________2K2  1/2W Resistor
R9_________________50K   1/2W Trimmer Cermet
R10________________68K   1/4W Resistor
R11,R12______________R47   4W Wirewound Resistors

C1,C2,C4,C5________47µF   63V Electrolytic Capacitors
C3________________100µF   25V Electrolytic Capacitor
C6_________________33pF   63V Ceramic Capacitor
C7_______________1000µF   50V Electrolytic Capacitor
C8_______________2200µF   63V Electrolytic Capacitor (See Notes)

D1_________________LED    Any type and color
D2________Diode bridge   200V 6A

Q1,Q2____________BD139    80V 1.5A NPN Transistors
Q3_____________MJ11016   120V 30A NPN Darlington Transistor (See Notes)
Q4_____________MJ11015   120V 30A PNP Darlington Transistor (See Notes)

SW1_______________SPST Mains switch

F1__________________4A Fuse with socket

T1________________220V Primary, 48-50V Secondary 75 to 150VA
                  Mains transformer (See Notes)

PL1_______________Male Mains plug

SPKR______________One or more speakers wired in series or in parallel
                  Total resulting impedance: 8 or 4 Ohm
                  Minimum power handling: 75W

Circuit diagram :

GuitarPre Cir

Preamplifier Circuit Diagram

Preamplifier parts:

P1,P2______________10K   Linear Potentiometers
P3_________________10K   Log. Potentiometer

R1,R2______________68K   1/4W Resistors
R3________________680K   1/4W Resistor
R4________________220K   1/4W Resistor
R5_________________33K   1/4W Resistor
R6,R16______________2K2  1/4W Resistors
R7__________________5K6  1/4W Resistor
R8,R21____________330R   1/4W Resistors
R9_________________47K   1/4W Resistor
R10_______________470R   1/4W Resistor
R11_________________4K7  1/4W Resistor
R12,R20____________10K   1/4W Resistors
R13_______________100R   1/4W Resistor
R14,R15____________47R   1/4W Resistors
R17,R18,R19_______100K   1/4W Resistors

C1,C4,C5,C6________10µF   63V Electrolytic Capacitors
C2_________________47µF   63V Electrolytic Capacitor
C3_________________47pF   63V Ceramic Capacitor
C7_________________15nF   63V Polyester Capacitor
C8_________________22nF   63V Polyester Capacitor
C9________________470nF   63V Polyester Capacitor
C10,C11,C12________10µF   63V Electrolytic Capacitors
C13_______________220µF   63V Electrolytic Capacitor

D1,D2____________BAT46   100V 150mA Schottky-barrier Diodes (see Notes)

Q1,Q3____________BC546    65V 100mA NPN Transistors
Q2_______________BC556    65V 100mA PNP Transistor

J1,J2___________6.3mm. Mono Jack sockets

SW1,SW2___________SPST Switches

Notes:

  • The value listed for C8 is the minimum suggested value. A 3300µF capacitor or two 2200µF capacitors wired in parallel would be a better choice.
  • The Darlington transistor types listed could be too oversized for such a design. You can substitute them with MJ11014 (Q3) and MJ11013 (Q4) or TIP142 (Q3) and TIP147 (Q4).
  • T1 transformer can be also a 24 + 24V or 25 + 25V type (i.e. 48V or 50V center tapped). Obviously, the center-tap must be left unconnected.
  • D1 and D2 can be any Schottky-barrier diode types. With these devices, the harmonic modifier operation will be hard. Using for D1 and D2 two common 1N4148 silicon diodes, the harmonic modifier operation will be softer.
  • In all cases where Darlington transistors are used as the output devices it is essential that the sensing transistor (Q2) should be in as close thermal contact with the output transistors as possible. Therefore a TO126-case transistor type was chosen for easy bolting on the heatsink, very close to the output pair.
  • R9 must be trimmed in order to measure about half the voltage supply across the positive lead of C7 and ground. A better setting can be done using an oscilloscope, in order to obtain a symmetrical clipping of the output wave form at maximum output power.
  • To set quiescent current, remove temporarily the Fuse F1 and insert the probes of an Avo-meter in the two leads of the fuse holder.
  • Set the volume control to the minimum and Trimmer R3 to its minimum resistance.
  • Power-on the circuit and adjust R3 to read a current drawing of about 30 to 35mA.
  • Wait about 15 minutes, watch if the current is varying and readjust if necessary.

Technical data:

Sensitivity:
    35mV input for 40W 8 Ohm output
    42mV input for 60W 4 Ohm output
Frequency response:
    50Hz to 20KHz -0.5dB; -1.5dB @ 40Hz; -3.5dB @ 30Hz
Total harmonic distortion @ 1KHz and 8 Ohm load:
    Below 0.1% up to 10W; 0.2% @ 30W
Total harmonic distortion @ 10KHz and 8 Ohm load:
    Below 0.15% up to 10W; 0.3% @ 30W
Total harmonic distortion @ 1KHz and 4 Ohm load:
    Below 0.18% up to 10W; 0.4% @ 60W
Total harmonic distortion @ 10KHz and 4 Ohm load:
    Below 0.3% up to 10W; 0.6% @ 60W
Treble control:
    +9/-16dB @ 1KHz; +12/-24dB @ 10KHz
Brightness control:
    +6.5dB @ 500Hz; +7dB @ 1KHz; +8.5dB @ 10KHz
Bass control:
    -17.5dB @ 100Hz; -26dB @ 50Hz; -28dB @ 40Hz

 

Source : red circuits

Regulator for Three-Phase Generator

This regulator was designed for use with a  generator with a higher output voltage. This  type of generator can be found on some boats  and on vehicles for the emergency services.  They are really just an adapted version of the  standard alternator normally found in cars.  The field winding is connected to the 12 V  (or 24 V) battery supply, whereas the generator winding is configured for the AC grid  voltage (230 V or 115 V). This AC voltage now  has to be kept stable via the 12 V field winding. Although it’s perfectly possible to use a  switching regulator for this, we deliberately  chose to use the old and trusted 723.

Circuit diagram :

Regulator for Three-Phase Generator-Circuit Diagram

Regulator for Three-Phase Generator Circuit Diagram

The generator is a three-phase type, with the  field winding rated for 12 VDC. The output voltage of the generator depends on its revs  and the current through the field winding.  Since the output voltage is relatively high, it  is fed via opto-couplers to the 723, which is  used in a standard configuration.  The output is fed via driver T1 to two  2N3055’s, connected in parallel, which sup-ply the current to the field winding. In the prototype we used TLP620 opto-couplers. These are suitable for use with alternating voltages because they have two anti-parallel LEDs at the input. The regulation works  quite well with these, with the output volt-age staying within a small range across a wide  range of revs.

However, the sensitivity of the two internal  LEDs can differ in this type of opto-coupler,  since it’s not always possible to ensure during  the manufacturing process that the distance  between each LED and the phototransistor is  exactly the same. For a more precise regulation it would be better to use two individual  opto-couplers per phase, with the inputs connected in anti-parallel and the outputs connected in parallel.

In order to ensure that there is sufficient isolation between the primary and secondary side  you should make a cutout in the PCB underneath the middle of each opto-coupler. Instead of a BD136 for T1 you could also use  a TIP32 or something similar. For T2 and T3  it’s better to use a type with a plastic casing,  rather than a TO3 case.

 

Author : Jac Hettema – Copyright : Elektor

0-30 Volt Laboratory Power Supply

The linear power supply, shown in the schematic, provides 0-30 volts, at 1 amp, maximum, using a discrete transistor regulator with op-amp feedback to control the output voltage. The supply was constructed in 1975 and has a constant current mode that is used to recharge batteries.

Circuit diagram :

0-30 Volt Laboratory Power Supply-Circuit Diagram

0-30 Volt Laboratory Power Supply Circuit Diagram

With reference to the schematic, lamp, LP2, is a power-on indicator. The other lamp (lower) lights when the unit reaches its preset current limit. R5, C2, and Q10 (TO-3 case) operate as a capacitor multiplier. The 36 volt zener across C2 limits the maximum supply voltage to the op-amps supply pins. D5, C4, C5, R15, and R16 provide a small amount of negative supply for the op-amps so that the op-amps can operate down to zero volts at the output pins (pins 6). A more modern design might eliminate these 4 components and use a CMOS rail-to-rail op-amp. Current limit is set by R3, D1, R4, R6, Q12, R10, and R13 providing a bias to U2 that partially turns off transistors Q9 and Q11 when the current limit is reached. R4 is a front panel potentiometer that sets the current limit, R22 is a front panel potentiometer that sets the output voltage (0-30 volts), and R11 is an internal trim-pot for calibration. The meter is a 1 milliamp meter with an internal resistance of 40 ohms. Switch S1 determines whether the meter reads 0-30 volts, or 0-1 amp.

A more modern circuit might use a single IC regulator, such as the MC78XX, or MC79XX series, immediately after the half wave rectifier, to replace approximately 30 components, or at least a high precision zener diode to replace D10 as the voltage reference. The LM4040 is one such voltage reference and has excellent stability over temperature. IC regulators such as the MC78XX series may eventually become obsolete as newer IC regulators are designed, however, discrete transistors, op-amps, and zeners are more generic, have a longer production lifespan, and allow the designer to demonstrate that he understands the principles of linear regulated power supply operation.

 

Source :edudirectory.50webs

Automatic AC Power Switch

for the Holiday Home

Electrical appliances accidentally left on  in (holiday) homes left unoccupied for a  short or a long period consume power  unnecessarily and can present a fire hazard. Everyone will be familiar with those  nagging thoughts, a few miles down the  road from the house: “Did I remember  to switch off the coffee machine? The  lights? The oven?”

Circuit diagram :

Automatic AC Power Switch-Circuit Diagram

Automatic AC Power Switch Circuit Diagram

Hotel rooms are often equipped with a  switch near the main door which enables the power supply to everything in  the room only when the plastic card (which  might contain a chip or have a magnetic strip  or a pattern of holes) that serves as the room  key is inserted. The circuit idea given here  to switch off lights and other appliances is  along the same lines. The solution is surprisingly simple.

A reed contact is fitted to the frame of the main entrance door, and a matching magnet  is attached to the door itself such that when  the door is closed the reed contact is also  closed. To enable power to the house, press  S1 briefly. Relay RE1 will pull in and complete  the circuit for all the AC powered appliances in  the house. The relay will be held in even after  the button is released via the second relay contact and the reed contact (‘latching’ function).

As soon as the main entrance door is  opened, the reed contact will also open.  This in turn releases the latch circuit and  consequently the relay drops out. The  various connected appliances will thus  automatically and inevitably be switched  off as soon as the house is left. The circuit is principally designed for  small holiday homes, where this mode  of operation is particularly practical. Of course, for any circuit that deals in AC  powerline voltages, we must mention  the following caution.

Caution:

shock hazard! Construction and connection of this circuit  should only be carried out by suitably-qualified  personnel, and all applicable electrical safety  regulations must be observed. In particular, it  is essential to ensure that the relay chosen is  appropriate for use at domestic AC grid volt-ages and is suitably rated to carry the required  current.

Author : Stefan Hoffmann – Copyright : Elektor

Flashing-LED Battery-status Indicator

Signals when an on-circuit battery is exhausted 5V to 12V operating voltage

A Battery-status Indicator circuit can be useful, mainly to monitor portable Test-gear instruments and similar devices. LED D1 flashes to attire the user's attention, signaling that the circuit is running, so it will not be left on by mistake. The circuit generates about two LED flashes per second, but the mean current drawing will be about 200µA. Transistors Q1 and Q2 are wired as an uncommon complementary astable multivibrator: both are off 99% of the time, saturating only when the LED illuminates, thus contributing to keep very low current consumption.

Circuit diagram :

Flashing-LED Battery

Flashing-LED Battery-status Indicator Circuit Diagram

The circuit will work with battery supply voltages in the 5 - 12V range and the LED flashing can be stopped at the desired battery voltage (comprised in the 4.8 - 9V value) by adjusting Trimmer R4. This range can be modified by changing R3 and/or R4 value slightly.

When the battery voltage approaches the exhausting value, the LED flashing frequency will fall suddenly to alert the user. Obviously, when the battery voltage has fallen below this value, the LED will remain permanently off. To keep stable the exhausting voltage value, diode D1 was added to compensate Q1 Base-Emitter junction changes in temperature. The use of a Schottky-barrier device (e.g. BAT46, 1N5819 and the like) for D1 is mandatory: the circuit will not work if a common silicon diode like the 1N4148 is used in its place.

Parts :

R1,R7__________220R  1/4W Resistors
R2_____________120K  1/4W Resistor
R3_______________5K6 1/4W Resistor
R4_______________5K  1/2W Trimmer Cermet or Carbon
R5______________33K  1/4W Resistor
R6_____________680K  1/4W Resistor
R8_____________100K  1/4W Resistor
R9_____________180R  1/4W Resistor

C1,C2____________4µ7  25V Electrolytic Capacitors

D1____________BAT46  100V 150mA Schottky-barrier Diode
D2______________LED  Red 5mm.

Q1____________BC547   45V 100mA NPN Transistor
Q2____________BC557   45V 100mA PNP Transistor

B1_______________5V to 12V Battery supply

Notes :

  • Mean current drawing of the circuit can be reduced further on by raising R1, R7 and R9 values.

Source : Red Circuits

 

Breakout Board for PIC10F2xx (SOT23-6)

Microcontrollers come in all sorts and sizes,  and it’s very tempting to use them every-where, even for very simple tasks. Tiny, inex-pensive microcontrollers especially suited  to very simple tasks, such as the Microchip  PIC10F2xx family, are also available. Thanks  to their compact size  and their ability to  source or sink 25 mA on their I/O pins, these  miniature microcontrollers are a good choice  for driving LEDs directly in miniature lighting  effect devices. They can also operate from a  2-V supply voltage, which allows them to be  powered directly by batteries (such a button  cells).

Breakout Board for PIC10F2xx (SOT23-6)

However, their small dimensions have  a few drawbacks, especially for developing  prototypes. The first drawback is that the IC  leads are so small that soldering is not easy,  and the lead pitch makes them difficult to  use with a breadboard or perforated proto-typing board. Another problem is that they  can only be programmed in-system, which  means that you always need an extra header  for programming (even if you can find a suit-able ZIF socket for a programmer, it will cost  you an arm and a leg).  The small PCB described here is intended to  make it easier to use Microchip PIC10F2xx  devices in the SOT23-6 package without  making the entire arrangement so big that you could just as well use a DIL version of the same IC.

Although the easiest way to solder the six-lead IC to the board is to use solder paste and  a hot-air iron, it is in fact possible to do this  with a normal soldering iron. Any excess sol-der can be removed with desoldering braid.  All leads are brought out to SIL connector  K1, which has a more conventional 100-mil  pitch and mates perfectly with a breadboard  or piece of perfboard for prototype develop-ment. What’s more, it is a one-to-one match  to the connector of a Microchip PICkit2 or  PICkit3 programmer.

The pads for the IC pins are surrounded by  larger pads that can be used as attachment  points for wires, resistors, LEDs and so on.  Once the prototype and the firmware are  finalised, the portion of the board outside  these pads can be sawn off and/or filed down  to make it easier to fit the board in a minia-ture enclosure.

Author :Luc Lemmens - Copyright : Elektor

Voltage Tester for Model Batteries

With a suitable load, the terminal voltage of a NiCd or lithium-ion battery is proportional to the amount of stored energy. This relationship, which is linear over a wide range, can be used to build a simple battery capacity meter.

Circuit Image :

 Voltage Tester for Model Batteries Image

Voltage Tester for Model Batteries Circuit Image 

This model battery tester has two functions: it provides a load for the battery, and at the same time it measures the terminal voltage. In addition, both functions can be switched on or off via a model remote-control receiver, to avoid draining the battery when it is not necessary to make a measurement. The load network, which consists of a BC517 Darlington transistor (T2) and load resistor R11 (15 Ω /5 W), is readily evident. When the load is active, the base of T1 lies practically at ground level. Consequently, T1 conducts and allows one of the LEDs to be illuminated.

Circuit Diagram :

Voltage Tester for Model Batteries-Circuit Diagram

Voltage Tester for Model Batteries Circuit Diagram

The thoroughly familiar voltmeter circuit, which is based on the LM3914 LED driver, determines which LED is lit. The values of R6 and R7 depend on the type and number of cells in the battery. The objective here is not to measure the entire voltage range from 0 V, but rather to display the portion of the range between the fully charged voltage and the fully discharged voltage. Since a total of ten LEDs are used, the display is very precise. For a NiCd battery with four cells, the scale runs from 4.8 V to 5.5 V when R6 = R7 = 2 kΩ. The measurement scale for a lithium-ion battery with two cells ranges from 7.2 V to 8.0 V if R6 = 2 kΩ and R7 = 1 kΩ.

For remote-control operation, both jumpers should be placed in the upper position (between pin 1 and the middle pin). In this configuration, either a positive or negative signal edge will start the measurement process. A positive edge triggers IC1a, whose output goes High and triggers IC1b. A negative edge has no effect on IC1a, but it triggers IC1b directly. In any case, the load will be activated for the duration of the pulse from monostable IC1b. Use P12 to set the pulse width of IC1a to an adequate value, taking care that it is shorter than the pulse width of IC1b.

If the voltage tester is fitted into a remote-controlled model, you can replace the jumpers with simple wire bridges. However, if you want to use it for other purposes, such as measuring the amount of charge left in a video camera battery, it is recommended to connect double-throw push-button switches in place of JP1 and JP2. The normally closed contact corresponds to the upper jumper position,while the normally open contact corresponds to the lower position.

Parts :

Resistors:
R1,R2 = 47kΩ
R3 = 100kΩ
R4 = 500kΩ
R5 = 1kΩ
R6,R7 = see text (1% resistors!)
R8 = 1kΩ5
R9 = 1kΩ2
R10 = 330Ω
R11 = 15Ω 5W
R12 = 15kΩ
P1 = 100kΩ preset

Capacitors:
C1 = 10nF
C2 = 100nF

Semiconductors:
D1-D10 = LED, red, high effi-ciency
T1 = BC557
T2 = BC517
IC1 = 74HC123
IC2 = LM3914AN

Miscellaneous:
PC1,PC2,PC3 = solder pin
JP1,JP2 = jumper or pushbutton

PCB Layout :

B. PCB Laout

Voltage Tester for Model Batteries PCB Layout

Copyright : Elektor